LMPA-Q7
Interflux LMPA-Q7 是一种低熔点焊膏,具有优化的钢网性能和更强的机械性能。LMPA-Q7 接替了 LMPA-Q6。
摘要
Interflux LMPA-Q7 是一种低熔点焊膏,具有优化的钢网性能和更强的机械性能。LMPA-Q7 取代了 LMPA-Q6。
LMPA-Q7 具有更长的钢网寿命和优化的印刷性能。LMPA-Q 合金的机械性能优于标准锡比(银)合金。
适用于
-
低熔点 "是指焊接合金的熔点或熔化范围低于传统的无铅合金,而传统的无铅合金通常是以锡(银)铜为基础的合金。绝大多数的低熔点合金是含Bi的,因为Bi具有降低熔点的特性。低熔点合金的主要驱动原因是一些电子元件和PCB材料的温度敏感性。这些元件和材料可能被用于锡(银)铜合金的焊接温度所损坏或预先损坏。这可能导致电子装置在现场出现早期故障,维修费用昂贵,在某些情况下可能导致危险情况。低熔点合金允许以较低的焊接温度进行焊接,从而减少(预先)损坏温度敏感元件和PCB材料的风险。像LMPA-Q这样的低熔点焊接合金需要比标准无铅焊接合金低得多的操作温度。在回流焊中,它要求的峰值T°为190°C-210°C,在波峰焊中,焊槽温度通常为220°C-230°C,在选择性焊接中,工作温度通常为240°C-250°C。在回流焊接中,低熔点合金还能使BTC(底部终端元件)的空隙率降低。一般来说,低熔点合金的空洞率低于10%,而无铅SAC合金通常有20-30%的空洞率。在波峰焊中,低熔点合金可以使生产速度提高到70%,在选择性焊接中,连接器的焊接速度可以达到50mm/s,总的工艺时间可以减少一半,机器的产能可以提高100%。此外,低熔点合金在热重的部件上不会出现良好的通孔填充问题。使用氮气进行波峰焊和回流焊是可能的,但不是必须的。LMPA-Q低熔点合金的热、电和机械性能足以满足大多数电子应用。鉴于所有这些优点,许多人认为低熔点合金是电子制造业的未来。
-
回流焊接是电子组装中最常用的焊接工艺。主要是SMD(表面贴装器件)元件,但也有一些通孔元件是在回流炉中通过焊膏焊接到PCB(印刷电路板)上的。回流炉通常是一个强制对流炉,但也可能是气相炉和红外炉。该过程的第一步是将焊膏涂在PCB的焊盘上,如果是通孔元件,则涂在通孔中。后者被称为Pin in Paste(PiP)或侵入式回流焊技术。主要的应用方法是网板印刷,但也可以采用点胶和焊膏喷射的方法。根据不同的应用方法,锡膏会有不同的浓度,并有不同的包装。焊膏是一种焊料粉末和凝胶助焊剂的混合物。凝胶助焊剂的类型和粉末的类型以及它们的混合比例,将决定焊膏的浓度。焊粉是由某种焊接合金制成的,具有一定的颗粒大小(分布)。较细的晶粒尺寸用于较小间距的元件和较小的网板孔径。点胶和甚至更多的喷射也需要更细的晶粒尺寸。凝胶助焊剂含有使要焊接的表面脱氧的物质。它还含有在很大程度上决定焊膏的一致性和工艺行为的物质。在网板印刷焊膏时,一个重要的参数是焊膏在网板上的时间内保持其印刷特性。这通常被称为焊锡膏的稳定性。锡膏的稳定性很难量化,但可以从技术数据表中的网板寿命指示来估计。在涂抹焊膏后,SMD元件被放置在焊膏上,与它们的可焊连接。在大多数情况下,这是用取放机完成的。锡膏需要有足够的粘附力来保持元件的位置,直到焊接。传送带会将PCB板传送到回流炉中,在那里PCB板被提交到回流焊接曲线中。这个轮廓是由不同的对流区的温度设置形成的。它们通常位于顶部和底部。 除了温度设置,在某些情况下,也可以对各区的对流速度进行编程,以获得更好或更低的热传导,或者当一些高的组件经历了太多的对流力。我们的目标是使所有元件达到焊接温度,这是由所使用的焊接合金决定的,而不损坏或过度加热温度敏感的元件。这对有大量大小元件或PCB板上铜分布不均的设备来说是个挑战。从这个角度来看,低熔点焊接合金大大限制了损坏或预先损坏元件和PCB板的风险。传送带的速度将决定轮廓的时间和烤炉的吞吐量。然而,在大多数情况下,"取放 "过程限制了产量。 并非所有的电子元件都适用于回流焊接。有些是因为它们的热质量,如大的变压器,有些是因为它们的热敏感性,如一些显示器、连接器、继电器、保险丝...。这些元件通常以通孔元件的形式出现,并以其他工艺进行焊接,如选择性焊接、波峰焊、手工焊接、机器人焊接、激光焊接等。
-
模板印刷是电子制造业中SMT(表面贴装技术)装配线上在PCB(印刷电路板)的焊盘上涂抹焊膏的最常用方法。模板印刷后,SMD(表面贴装设备)元件连同其可焊接的触点被放置在焊膏上,PCB被运送到回流炉中,元件被焊接到PCB板上。钢网印刷也可用于在槽孔中涂抹焊膏,用于Pin in Paste(PiP,侵入式回流焊)技术,该技术是为了在回流焊过程中焊接通孔元件。模板印刷也可用于在PCB板上涂抹SMT粘合剂(胶水)。SMD元件被放置在将在回流炉中固化的胶水上。之后,粘在PCB板上的SMD元件将在波峰焊接过程中被焊接。 PCB板被压在一个网板上,网板上有需要涂抹焊膏的孔洞。模版上有一定量的焊膏。刮刀以一定的压力降到网板上。刮刀以一定的印刷速度在网板上移动。这将使焊锡膏滚入孔洞。印刷速度可由所需的产量决定,典型的是大批量生产,但也可能受到所用焊膏的限制。这个速度可以从20-150毫米/秒不等。一旦确定了所需的速度,就必须为该印刷速度确定一个印刷压力。更高的速度需要更高的压力。 正确的印刷压力是在印刷后获得干净网板所需的最小压力,这意味着所有过多的锡膏已被刮刀清除。 板子从网板上垂直移开,锡膏从网板上释放出来,PCB的焊盘上有锡膏沉积。 目标是获得一个明确的印刷结果,所有的焊膏都从网板上释放出来,并且没有焊膏被压在网板和PCB板之间。对于较小的孔径和较厚的网板来说,焊膏的释放显然更加困难。一些设计规则说,孔径的表面与孔径两侧('壁')的表面之比最好不要小于0.6。 钢网的质量是良好浆料释放的一个主要参数。粗糙的侧面更有可能粘附焊膏。存在不同类型的网板。最受欢迎的是不锈钢网板,它有激光切割的孔隙,之后通过化学处理使其光滑。有时,它们会被处理成涂层,以便更好地释放锡膏。锡膏被压在网板和PCB板之间的主要原因是板子和网板之间的密封性不好,或者对于所使用的印刷速度来说印刷压力太高。这可能会导致回流后的焊料起球或桥接。 有些印刷机有一个自动的网板下清洗装置,可以通过编程在多次印刷后清洗网板。这将有利于获得稳定的印刷效果。建议不要在这些单元中使用基于IPA或水的清洗液,因为它们可能影响焊膏的稳定性。建议使用专门为此设计的产品。 锡膏在网板上的稳定性,即锡膏在一段时间内保持其印刷特性的程度,也是稳定印刷工艺的一个参数。 一些印刷机集成了AOI(自动光学检测),它将检查印刷结果,如果偏离了编程的预期值,就会发出警报。这将有助于避免生产出的电子单元的焊点不符合良好标准。
-
点胶是一种用于电子制造业的技术,将锡膏(或粘合剂)从注射器涂抹到PCB(印刷电路板)上。点胶是一种比标准网板印刷更灵活的涂抹锡膏的方式,因为它可以在表面有预装元件的情况下有选择地涂抹锡膏。然而,点胶是一个比网板印刷慢得多的过程,不适合大批量的生产。这就是为什么它主要用于在SMT(表面贴装技术)装配线上添加额外的焊膏,但也用于返工、维修和原型制作。点胶可以手动或自动完成。 在返工和维修中,这通常是通过一个系统手动完成的,该系统对注射器的柱塞施加加压空气,焊膏通过针头被推出来。但它也可以通过手动柱塞来完成。 在自动化过程中,如SMT装配线上的独立点胶机或内置在钢网印刷机中的点胶机,有两个主要系统可以将焊膏从注射器中推出:气压和Archimes螺丝。气压系统通常比较便宜,但锡膏沉积物的体积稳定性比较难控制,特别是当注射器几乎是空的时候,压缩空气的体积比较大,而注射器中需要通过该气压移动的材料比较少。使用阿基米德螺钉的系统通常更加稳定和快速。然而,根据焊锡膏的质量,它们对一些非常细小的焊锡膏颗粒很敏感,这些颗粒被挤压在阿基米德螺钉和侧壁之间,可能会堵塞焊锡膏流出的针。针越小越长,堵针的风险就越大。针的大小是根据所需焊料的大小来选择的。焊锡膏的颗粒大小是根据这个针头大小来选择的。一般来说,3型焊膏可用于内径大于0.5毫米的针头,4型用于内径小于0.25毫米的针头,5型用于内径小于0.15毫米的针头。 在体积稳定性和对针头堵塞的敏感性方面,不同类型的焊膏的点胶性能会有所不同。如果注射器中的焊膏存放时间过长,温度过高或过低,也会影响点胶性能。时间和温度对点胶性能的影响程度也会因不同的焊膏而不同。点胶用的焊膏可以用不同类型的注射器,这是由机器的预期用途所要求的。它们还可以根据待分配的焊膏的粘度,提供不同类型的柱塞。注射器的标准尺寸为5CC、10CC和30CC。
关键优势
-
增强型低熔点焊膏
-
LMPA是指低熔点合金。要了解更多信息,请访问lmpa-q.com。
-
低焊接温度
-
高印刷速度
-
钢网寿命长,稳定性高
-
适用于钉入式(PIP)。
-
空隙是焊点中的空气袋。在焊接过程中产生的气体没有从液态焊接合金中找到出路,在凝固时被困住。它们通常出现在焊点或其大部分被元件主体覆盖的元件上,如BGA、LGA、QFN、LED...。空洞通常用X射线机器来检测。空洞在锡(银)铜无铅焊接合金中更为明显,其空洞水平通常在20-30%之间,但可高达50%。这可能会导致较差的导电性和导热性,根据应用情况,可能会导致故障。此外,焊点的机械强度也会受到这些空隙的影响。这对于在现场受到(热)机械力影响的应用来说可能是个问题,如振动、机械冲击、热循环、热冲击......空隙水平也会因使用的焊膏类型和焊接曲线而不同。像LMPA-Q这样的低熔点焊接合金的空隙水平通常低于10%。在现场,空隙水平可以通过使用带有真空室的回流焊机、调整焊接曲线(浸泡曲线通常优于斜坡曲线)、选择正确的焊膏、调整焊膏印刷的网板设计或改变PCB表面处理来降低。
-
减少了头枕部的缺陷
-
光滑透明的残留物
-
环境友好
-
绝对无卤素的焊接化学制品不包含任何有意添加的卤素或卤化物。IPC的分类允许最低的 "L0 "级别的卤素含量不超过500ppm。这一等级的焊剂、焊膏和焊丝通常被称为 "无卤素"。绝对无卤素的焊接化学制品更进一步,不包含这种 "允许 "水平的卤素。特别是结合无铅焊接合金和敏感的电子应用,这些低水平的卤素已被报告导致可靠性问题,如过高的泄漏电流。 卤素是周期表中的元素,如Cl、Br、F和I,它们具有喜欢反应的物理特性。从焊接化学的角度来看,这是非常有趣的,因为它的目的是清除被焊接表面的氧化物。事实上,卤素能很好地完成这项工作,即使是难以清洁的表面,如黄铜、锌、镍......或严重氧化的表面或退化的I-Sn和OSP(有机表面保护),也能在卤素助焊剂的帮助下进行焊接。卤素在可焊性方面提供了一个很大的工艺窗口。但问题是,卤素助焊剂的残留物和反应产物对电子电路来说是有问题的。它们通常具有高吸湿性和高水溶性,增加了电迁移和高泄漏电流的风险。这意味着电子电路发生故障的风险很大。具体到无铅焊接合金,有更多的报告指出,即使是最小的卤素含量也会对敏感的电子应用造成问题。敏感的电子应用通常是高电阻电路、测量电路、高频电路、传感器......这就是为什么在电子制造业的焊接化学中趋向于远离卤素。一般来说,当元件和PCB(印刷电路板)的焊接表面的可焊性正常时,就不需要这些卤素了。巧妙设计的绝对无卤素的焊接产品将提供足够大的工艺窗口来清洁表面并获得良好的焊接效果,这与高可靠性的残留物相结合。
-
当一个焊接产品被贴上免清洗标签时,这意味着该焊接产品已经通过了可靠性测试,如表面绝缘电阻(SIR)测试或电(化学)迁移测试。这些测试旨在测试焊接产品的残留物在高温和高相对湿度条件下的吸湿性能。免清洗是指在焊接过程后,残留物可以留在电子装置上而不被清洗。这将适用于到目前为止的大多数电子应用。对于非常敏感的电子应用,通常是高电阻电子电路、高频率电子电路等......有可能需要对电子单元进行清洗。判断是否有必要清洗,始终是电子制造商的责任。
-
降低了生产成本
-
无铅
-
RoHS是危险物质限制的缩写。它是一项欧洲指令:第2002/95/EC号指令。它限制在欧盟境内的电气和电子设备中使用一些被认为是高度关注物质(SHVC)的物质。 这些物质的清单可以在下面找到: 请注意,这些信息可能会有变化。请随时查看欧盟网站,了解最新信息: https://ec.europa.eu/environment/topics/waste-and-recycling/rohs-directive_nl https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 1.镉和镉化合物 2.铅和铅化合物 3.汞和汞化合物(Hg) 4.六价铬化合物(Cr) 5.多氯联苯(PCB) 6.多氯萘(PCN) 7.氯化石蜡(CP) 8.其他氯化有机化合物 9.多溴联苯(PBB) 10.多溴二苯醚(PBDE) 11.其他溴化有机化合物 12.有机锡化合物(三丁基锡化合物、三苯基锡化合物) 13.石棉 14.偶氮化合物 15.甲醛 16.聚氯乙烯(PVC)和PVC混合物 17.十溴二苯酯(从2008年7月1日起)。 18.全氟辛烷磺酸:欧盟指令76/769/EEC(不允许质量浓度等于或高于0.0005%)。 19.邻苯二甲酸二(2-乙基己基)酯(DEHP) 20.邻苯二甲酸丁苄酯(BBP) 21.邻苯二甲酸二丁酯(DBP) 22.邻苯二甲酸二异丁酯(Disobutyl phthalate 23.溴化二苯酯(Deca) (用于电气和电子设备) 欧盟以外的其他国家已经出台了自己的RoHS立法,在很大程度上与欧洲RoHS非常相似。
符合质量要求
IPC
LMPA-Q7 符合IPC J-STD-005的焊膏标准。
RoHS
LMPA-Q7 符合欧盟RoHS关于限制在电气和电子设备中使用某些危险物质的指令。
ISO 9001
LMPA-Q7 是在比利时的Interflux电子公司生产的,该公司年复一年地通过了可靠的质量管理系统的ISO 9001标准。