TS 15

醇基焊剂

替换为

TS 15 been replaced by .

For those still interested:

Interflux® TS 15 is a no-clean flux, developed to give minimal residue formation after soldering. TS15 is very suitable for solar module manufac-turing.

TS 15 10L angle

适用于

  • 波峰焊是电子制造业中用于将电子元件连接到PCB板上的一种批量焊接工艺。该工艺通常用于通孔元件,但也可用于焊接一些SMD(表面贴装器件)元件,这些元件在通过波峰焊工艺之前用SMT(表面贴装技术)粘合剂粘在PCB的底面。波峰焊工艺包括三个主要步骤:助焊、预热和焊接。一条传送带将印刷电路板运送到机器中。印刷电路板可以安装在一个框架中,以避免为每块不同的印刷电路板调整传送带的宽度。 助焊通常是通过喷雾式助焊剂完成的,但也可以使用泡沫助焊剂和喷射助焊剂。液体助焊剂从PCB的底部涂在表面和槽孔中。助焊剂的目的是使PCB和元件的可焊表面脱氧,使液体焊接合金与这些表面形成金属间连接,从而形成焊点。 预热有三个主要功能。助焊剂的溶剂需要被蒸发掉,因为它一旦被使用就失去了作用,而且当它在液体状态下接触焊锡波时,会导致焊接缺陷,如刷牙和焊球。一般来说,水基助焊剂比醇基助焊剂需要更多的预热来蒸发。预热的第二个功能是限制PCB与焊波的液体焊料接触时的热冲击。这对某些SMD元件和PCB材料来说可能很重要。预热的第三个功能是促进焊料的通孔润湿。由于PCB板和液态焊料之间存在温差,液态焊料在进入通孔时将被冷却。热量大的电路板和元件会从液态焊料中吸走大量的热量,以至于它在到达顶部之前就被冷却到凝固点而冻结。这是使用锡(银)铜合金时的一个典型问题。良好的预热可以限制PCB板和液态焊料之间的温差,从而减少液态焊料在上通孔时的冷却时间。这使得液态焊料有更好的机会到达通孔的顶部。 在第三步中,PCB板被传递到一个焊料波上。充满焊接合金的焊槽被加热到焊接温度。这个焊接温度取决于所用的焊接合金。液态合金通过通道被泵送到波峰成形器中。有几种类型的波峰成形器。一个传统的设置是一个芯片波和一个层状主波相结合。芯片波沿PCB移动的方向喷射焊料,并允许焊接SMD元件的背面,这些元件本身的主体在层状波中被屏蔽了波的接触。层状主波流向前方,但可调节的背板的位置是这样的,板子会把波推向后方。这将避免PCB被拖入焊接的反应产物中。一种越来越受欢迎的前波是Wörthmann-波,它将芯片波和主波的功能结合在一个波中。这种波浪对正确的设置和桥接更加敏感。由于无铅焊接合金需要较高的工作温度,并且倾向于相当强烈的氧化,很多波峰焊工艺都是在氮气环境中完成的。一个新的市场趋势和被一些人认为是焊接的未来是使用低熔点合金,如LMPA-Q。LMPA-Q需要较低的温度并减少氧化。它也有一些与成本有关的好处,如减少电力消耗,减少载体的磨损和不需要氮气。它还能减少对电子元件和PCB材料的热影响。

关键优势

  • 科洛芬,也叫松香,是一种从树木中提取的物质,通常用于焊接助焊剂。它可以用于液体助焊剂以及凝胶助焊剂中。在IPC的分类中,含有科洛芬的助焊剂可以通过 "RO "这一名称来识别。一般来说,科洛芬在时间和温度方面提供了一个良好的工艺窗口,但根据含有科洛芬的助焊剂的应用,它也有一些缺点。在用于波峰焊和选择性焊接的液体助焊剂中,科洛芬会增加堵塞喷雾和微喷射助焊剂应用系统的喷嘴的风险,从而导致更多的维护和更高的不良焊接结果的风险。松香(=colophony)基助焊剂在焊接机和工具及载体上的残留物是很难清除的,通常需要使用溶剂型清洁剂。当含有松香的助焊剂意外地落在连接器或接触梳状结构(如遥控器或电动机械接触器/继电器/开关)的触点上时,已知会导致接触问题和现场电子装置的故障。 此外,残留在电路板上的助焊剂可能会在电子针测试(ICT=电路测试)中产生接触问题,这可能会因为错误而导致生产的延误。这通常需要对PCB和/或测试针进行清洗。这些昂贵的测试针是相当脆弱和敏感的,容易被清洁所破坏。 此外,松香助焊剂的残留物在时间上与保形涂料不兼容。松香的残留物在PCB和保形涂料之间形成了一个分离层,在一段时间内会导致保形涂料的脱落和开裂,特别是当电子装置经历了大量的温度循环(升温和降温)。 由于这些原因,不含Colophony的助焊剂,特别是 "OR "分类的助焊剂通常用于波峰焊和选择性焊接。 科洛芬也可用于焊线。尽管科洛芬在时间和温度上提供了一个良好的工艺窗口,但它在加热时对变色非常敏感。变色将取决于科洛芬的类型和它所看到的温度。由于焊头温度通常相当高,焊丝中的胶质会在焊点周围形成相当重的视觉残留物。这将把它们与回流焊、波峰焊和选择性焊接中的其他焊点区分开来。当这种情况不理想时,就需要进行清洗操作。此外,含有焊锡丝的烟气被认为是有害的。排烟装置是强制性的,但在任何手工焊接操作中都是可取的。含有科洛芬的焊丝仍然被大量使用,但不含科洛芬的焊丝,特别是 "RE "分类的焊丝正变得越来越重要。 科洛芬也被用于焊膏中。除了在时间和温度上提供一个良好的工艺窗口外,它还为钢网上的焊膏提供良好的稳定性。这将有利于稳定的印刷过程,从而获得稳定的焊接结果和缺陷率。在回流焊中,松香的变色并不像焊锡丝那样突出,因为回流焊的温度比手工焊接的温度低。但松香残留物与保形涂料的相容性较差,在热循环后可能会出现保形涂料的裂缝或脱落的情况。尽管大多数制造商会将保形涂料涂抹在焊膏残留物上,但为了达到最佳效果,建议将焊膏残留物清理掉。 鉴于科洛芬的上述优点,大多数焊膏都含有科洛芬。

  • 绝对无卤素的焊接化学制品不包含任何有意添加的卤素或卤化物。IPC的分类允许最低的 "L0 "级别的卤素含量不超过500ppm。这一等级的焊剂、焊膏和焊丝通常被称为 "无卤素"。绝对无卤素的焊接化学制品更进一步,不包含这种 "允许 "水平的卤素。特别是结合无铅焊接合金和敏感的电子应用,这些低水平的卤素已被报告导致可靠性问题,如过高的泄漏电流。 卤素是周期表中的元素,如Cl、Br、F和I,它们具有喜欢反应的物理特性。从焊接化学的角度来看,这是非常有趣的,因为它的目的是清除被焊接表面的氧化物。事实上,卤素能很好地完成这项工作,即使是难以清洁的表面,如黄铜、锌、镍......或严重氧化的表面或退化的I-Sn和OSP(有机表面保护),也能在卤素助焊剂的帮助下进行焊接。卤素在可焊性方面提供了一个很大的工艺窗口。但问题是,卤素助焊剂的残留物和反应产物对电子电路来说是有问题的。它们通常具有高吸湿性和高水溶性,增加了电迁移和高泄漏电流的风险。这意味着电子电路发生故障的风险很大。具体到无铅焊接合金,有更多的报告指出,即使是最小的卤素含量也会对敏感的电子应用造成问题。敏感的电子应用通常是高电阻电路、测量电路、高频电路、传感器......这就是为什么在电子制造业的焊接化学中趋向于远离卤素。一般来说,当元件和PCB(印刷电路板)的焊接表面的可焊性正常时,就不需要这些卤素了。巧妙设计的绝对无卤素的焊接产品将提供足够大的工艺窗口来清洁表面并获得良好的焊接效果,这与高可靠性的残留物相结合。

  • RoHS是危险物质限制的缩写。它是一项欧洲指令:第2002/95/EC号指令。它限制在欧盟境内的电气和电子设备中使用一些被认为是高度关注物质(SHVC)的物质。 这些物质的清单可以在下面找到: 请注意,这些信息可能会有变化。请随时查看欧盟网站,了解最新信息: https://ec.europa.eu/environment/topics/waste-and-recycling/rohs-directive_nl https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 1.镉和镉化合物 2.铅和铅化合物 3.汞和汞化合物(Hg) 4.六价铬化合物(Cr) 5.多氯联苯(PCB) 6.多氯萘(PCN) 7.氯化石蜡(CP) 8.其他氯化有机化合物 9.多溴联苯(PBB) 10.多溴二苯醚(PBDE) 11.其他溴化有机化合物 12.有机锡化合物(三丁基锡化合物、三苯基锡化合物) 13.石棉 14.偶氮化合物 15.甲醛 16.聚氯乙烯(PVC)和PVC混合物 17.十溴二苯酯(从2008年7月1日起)。 18.全氟辛烷磺酸:欧盟指令76/769/EEC(不允许质量浓度等于或高于0.0005%)。 19.邻苯二甲酸二(2-乙基己基)酯(DEHP) 20.邻苯二甲酸丁苄酯(BBP) 21.邻苯二甲酸二丁酯(DBP) 22.邻苯二甲酸二异丁酯(Disobutyl phthalate 23.溴化二苯酯(Deca) (用于电气和电子设备) 欧盟以外的其他国家已经出台了自己的RoHS立法,在很大程度上与欧洲RoHS非常相似。

  • 焊接后的残留物是焊接过程中所固有的。一些焊接产品会比其他产品留下更多的残留物。一般来说,低残留的焊接产品有优先权。残留物通常因更多潜在原因而不受欢迎。其中一个原因是美学上的。当最终客户收到他的电路板时,显然他喜欢它们尽可能的干净。残留物也会干扰电针测试,如ICT(电路测试)或飞针。它们可能会造成接触问题和错误的读数,从而阻碍生产流程。残留物也会聚集在测试针上,需要将其清理掉。这些测试针是相当脆弱的,在清洁过程中损坏它们的风险是真实的。焊接过程中的残留物也可能干扰敏感电子应用的高频信号。由松香和树脂产生的残留物通常与保形涂料的兼容性差。此外,当它们最终出现在连接器触点、遥控器的(碳)触点、开关、继电器、接触器的接触面上时,已知它们会导致接触问题,并造成现场故障。 当焊接产品被归类为 "免清洗 "时,表明这些焊接产品的残留物可以留在电子装置上。这是基于通过可靠性测试,如表面绝缘电阻(SIR)测试和电(化学)迁移测试。全世界有许多标准规定了此类测试。最被接受的标准是IPC标准。在这些可靠性测试中,带有梳状图案的测试板用焊接产品以指定的参数进行焊接。测试板在规定的时间内被置于高湿度和高温度的条件下,在此期间,表面绝缘电阻被监测。该表面绝缘电阻不能低于规定的数值,并且用显微镜对电路板进行目视检查,看是否有异常情况,例如电(化学)迁移。

  • 醇基焊剂是以酒精作为主要溶剂的液体焊剂。在电子制造业中使用的大多数液体助焊剂仍然是醇基的。主要原因是它们在历史上的使用和因此而获得的市场份额,以及与水基助焊剂相比,它们的工艺窗口一般较大。水基助焊剂与醇基助焊剂相比有许多优点,如消耗量低,无VOC(挥发性有机化合物)排放,无火灾危险,不需要特殊的运输和储存,生产区的气味较低......然而,许多电子制造商似乎更喜欢醇基助焊剂的较大工艺窗口,而不是水基助焊剂的优点。一般来说,醇基助焊剂对正确的喷雾助焊剂设置不太敏感,无法在表面和通孔中获得良好的助焊剂应用。此外,它们在预热时更容易挥发,在波浪接触时,剩余的溶剂滴产生焊球、焊料飞溅或桥接的风险更小。另一个使水基助焊剂的实施复杂化的参数是,在某些情况下,更换助焊剂可能是一个耗时而昂贵的过程。它通常涉及到同源测试和终端客户的批准。特别是对于EMS(电子制造服务=分包商),这可能是一个挑战。 一些国家已经实施立法,限制工厂烟囱的VOC排放,或对VOC排放征税。这似乎是改用水基助焊剂的一个额外激励因素。 最近的一个事态发展迫使许多制造商开始研究水基助焊剂。2020年初的COVID贫血症,突然增加了对醇基消毒剂的需求,以至于在某一时刻,市场上的醇类产品几乎不存在。幸运的是,生产酒精的行业能够及时提高产量,避免电子制造商在没有助焊剂的情况下操作他们的焊接机。

文件

  • 有1种语言版本: